A Pinch of Sodium: Rapid CO₂ Uptake with MgO-based CO₂ sorbents upon promotion with Na₂CO₃ seeds

<u>A. Landuyt¹</u>, I. Kochetygov², M. Krödel¹, P. M. Abdala¹, W. L. Queen^{2*}, C. R. Müller^{1*}

¹Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21 Zürich 8092, Switzerland, ²Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH-1951 Sion, Switzerland

There is an urgent need to develop and engineer functional materials that can capture and release CO₂ on demand. Solid oxide materials such as MgO and CaO constitute a promising family of materials for CO₂ capture, utilization, and storage, considering their favorable thermodynamics, high theoretical CO₂ uptake capacities and earth-abundance. However, despite favorable carbonation thermodynamics, MgO suffers from a limited CO₂ uptake due to very slow carbonation kinetics. The carbonation kinetics can be enhanced by adding an alkali metal nitrate promoter such as NaNO₃, which dissolves surface carbonates in the form of $[Mg^{2+...}CO_3^{2-}]$ ion pairs and thereby facilitates MgCO₃ crystallization.^{1,2} Moreover, it was found that the addition of Na₂CO₃ seeds to NaNO₃-promoted MgO further increases the CO₂ uptake rate by a factor of $10.^{3}$ We investigated the promotional effect of Na2CO3 via in situ synchrotron-based X-ray powder diffraction (XRD) with a high time resolution (1 s) complemented by electron microscopy characterization. We demonstrate that Na_2CO_3 rapidly transforms into $Na_2Mg(CO_3)_2$ in the presence of MgO, CO₂, and NaNO₃. The Na₂Mg(CO₃)₂ phase acts as an effective nucleation seed that boosts MgCO₃ growth. Our In-situ XRD measurements prove that MgCO₃ nucleates onto the Na₂Mg(CO₃)₂ seeds while TEM imaging of the Na₂Mg(CO₃)₂-MgCO₃ interphase reveals that the Na₂Mg(CO₃)₂ seeds promote MgO dissolution and thereby facilitate MgCO₃ growth. Taken together, the insights obtained here will help the development of more effective MgO-based CO₂ sorbents.

Figure 1. SEM-EDX analysis of a carbonated $NaNO_3/Na_2Mg(CO_3)_2$ -promoted MgO(100) single crystal. (a) SEM image of a $Na_2Mg(CO_3)_2$ crystals surrounded by MgCO₃ crystals. (b) zoom focusing on the etching pits formed in the MgO(100) surface. (c) Corresponding Mg and (d) Na elemental maps.

[1] Annelies Landuyt, Priyank V. Kumar, Jodie A. Yuwono, Alexander H. Bork, Felix Donat, Paula M. Abdala, Christoph R. Müller, *JACS Au*, **2022**, 2, 2731–2741

[2] Alexander H. Bork, Margarita Rekhtina, Elena Willinger, Pedro Castro-Fernández, Jakub Drnec, Paula M. Abdala, and Christoph R. Müller, *PNAS*, **2021**, 118, e2103971118

[3] Anh Tuan Vu, Keon Ho, Seongmin Jin, Chang Ha Lee, Chem. Eng. J. 2016, 291, 161–173.