Design of selective, stable, and scalable ZnZrOx catalysts for sustainable methanol synthesis from CO²

 $\tt T. Zou^1$, T. Pinheiro Araújo 1 , J. Morales-Vidal 2 , M. Agrachev 1 , P. O. Willi 1 , R. N. Grass 1 , G. Jeschke 1 , S. Mitchell¹, N. López², J. Pérez-Ramírez¹*

¹ETH Zurich, ²Institute of Chemical Research of Catalonia

Mixed zinc-zirconium oxides (ZnZrO_x) are highly selective and stable catalysts for methanol production via catalytic carbon dioxide hydrogenation, a more sustainable route to produce this vital energy carrier and commodity. However, a lack of in-depth understanding of descriptors governing reactivity and stability of $ZnZrO_x$ catalysts hinder the performance improvements required for effective industrial implementation. The coprecipitation (CP) method typically employed in preparing $ZnZrO_x$ systems is also constrained by Zn incorporation into the bulk of $ZrO₂$, leading to catalysts with low surface area and suboptimal $CO₂$ adsorption capacity.^[1] Here, we conduct a systematic comparison of $ZnZrO_x$ catalysts synthesized by flame spray pyrolysis (FSP, **Fig. 1a**) and wet impregnation (WI) to coprecipitated analogues, to establish detailed synthesis-structure-performance relationships. FSP and WI systems display up-to 3-fold higher methanol productivities than their CP counterparts (**Fig. 1b**) with stable performance in both pure $CO₂$ and hybrid CO-CO₂ feeds, by maximizing surface area as well as the formation of atomically dispersed Zn^{2+} sites incorporated in lattice positions within the ZrO₂ surface, as revealed by electron microscopy (**Fig. 1c**) and confirmed by operando X-ray absorption spectroscopy (XAS). In situ electron paramagnetic resonance (EPR) spectroscopy demonstrates that the catalyst architectures resulting from FSP and WI markedly foster the generation of oxygen vacancies $(V_0)^{[2]}$ Kinetic and computational modelling show that these vacancies create active ensembles with surrounding Zn and Zr-O atoms (**Fig. 1c** inset) that favor methanol production through the formate pathway while suppressing \overline{CO} formation.^[2] This work elucidates the nature of active sites, their correlation to experimental fingerprints and working mechanisms, and provides a scalable synthetic pathway and design guidelines for this cost-effective and earth-abundant catalyst family in sustainable methanol synthesis.

Fig. 1a Scheme of the FSP setup for ZnZrO_x catalysts and the resultant ZrO₂ polymorphs of FSP, WI, and CP catalysts. **b** Methanol space-time yield (*STY*) during CO₂ hydrogenation over ZnZrO_x catalysts prepared by different methods with varying Zn content, at 593 K, 5 MPa, $H_2/CO_2 = 4$, and $GHSV$ = 24,000 cm^3_{STP} h $^{-1}$ $\text{g}_{\text{cat}}^{-1}$. **c** Energy dispersive X-ray (EDX) maps of the used FSP-made ZnZrO_x catalyst with 5 mol% Zn, with a representative model of the most active m -ZnZrO_x catalytic ensemble shown in the inset.

[1] Zhe Han, Chizhou Tang, Feng Sha, Shan Tang, Jijie Wang, Can Li, *J. Catal.* **2021**, 396, 242-250. [2] Thaylan P. Araújo, Jordi Morales-Vidal, Tangsheng Zou, Mikhail Agrachev, Simon Verstraeten, Patrik O. Willi, Robert N. Grass, Gunnar Jeschke, Sharon Mitchell, Núria López, Javier Pérez-Ramírez, *Adv. Energy Mater.* **2023***,* 13, 2204122.