## Matched Pair Theranostics with <sup>99m</sup>Tc and <sup>188</sup>Re-DETA-N-Onartuzumabfor the c-Met Receptor.

J. Genz<sup>1</sup>, S. Klingler<sup>1</sup>, J. P. Holland<sup>1</sup>\*

<sup>1</sup>University of Zurich, Wintherthurerstrasse 190, 8057 Zurich

Highly specific targeting vectors such as monoclonal antibodies (mAbs), enable a personalized radiotherapy that limits damage to the surrounding tissues.<sup>[1]</sup> The linkage between a biomolecule and the radionuclide can be made by employing rapid photoreactions.<sup>[2]</sup> The use of the matched pair <sup>99m</sup>Technetium ( $t_{1/2} = 6$  h,  $\gamma$ -ray = 141 keV [89%]) and <sup>188</sup>Rhenium ( $t_{1/2} = 17$  h,  $\beta_{max} = 2.12$  MeV and  $\gamma$ -ray = 155 keV [15%]) have high potential for cancer therapy.

Herein, we report the synthesis, characterization, protein conjugation, and  $^{99m}Tc/^{188}$ Reradiolabeling studies on the cancer-specific mAb onartuzumab (MetMAb), with the novel photoactivatable DETA-N ligand (Figure A). Photochemical protein ligation reactions with onartuzumab were performed in water under ambient conditions in 15 min. Planar  $\gamma$ -ray scintigraph imaging ( $\gamma$ -eye, Bioemtech, Greece) was performed on female athymic nude mice bearing subcutaneous MKN-45 xenograft between 0 h and 24 h post-radiotracer injection (Figure B). Biodistribution experiments were performed after 24 h and 72 h. The tumor specificity of <sup>99m</sup> Tc/<sup>188</sup>Re-onartuzumab was assessed *in vivo* by competitive inhibition (blocking) studies.

The photoradiosynthesis of [<sup>99m</sup>Tc/<sup>188</sup>Re][Tc/Re(CO)<sub>3</sub>(DETA-N)]-onartuzumab was accomplished by irradiating the reaction mixture with 395 nm light for 15 min. Purification by size-exclusion methods yielded the radiolabeled antibody in a RCP over 99% (<sup>99m</sup>Tc and <sup>188</sup>Re) and an overall RCY of 17% (<sup>99m</sup>Tc) and 18% (<sup>188</sup>Re). Tumor uptake reached 20.20±4.05%ID g<sup>-1</sup> for <sup>99m</sup>Tc-onartuzumab and 22.13±3.11%ID g<sup>-1</sup> for <sup>188</sup>Re-onartuzumab after 24 h and 20.21±1.47 %ID g<sup>-1</sup> for <sup>188</sup>Re-onartuzumab after 72 h in the normal groups. Blocking experiments confirmed tumor specificity with a reduction in tumor uptake of ~70% at the time points for <sup>99m</sup>Tc and <sup>188</sup>Re.

 $[^{99m}Tc/^{188}Re][Tc/Re(CO)_3(DETA-N)]$ -onartuzumab is a promising candidate for further use in theranostic studies of tumors presenting high expression of the c-MET receptor.



A: Structure of [<sup>99m/188</sup>Re][Tc/Re(CO)<sub>3</sub>(DETA-N)]-onartuzumab; B: Szintigraphs of the mice (left. <sup>99m</sup>Tc, right:<sup>188</sup>Re).

[1] J. Crudo, S. de Castiglia *et al.*, *J. Radioanal. Nucl. Chem.* **2004**, *261*, 337-342.
[2] D. F. Earley, J. P. Holland *et al.*, *JACS Au* **2022**, *2*, 646-664.