
Probing the mechanism of facile water dissociation on oxygen covered Cu(111) by Reflection Absorption Infrared Spectroscopy (RAIRS)

<u>M. Suchodol</u>¹, R. D. Beck¹*

¹Surface Dynamics Group, Institute of Chemical Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

The presence of oxygen atoms on a Cu(111) surface strongly reduces the activation barrier for water dissociation, as compared to bare Cu(111). In this work, we present a direct experimental observation of the hydrogen abstraction mechanism for H₂O dissociation on a O/Cu(111) surface using reflection absorption infrared spectroscopy (RAIRS). By dosing ¹⁸O₂(g) onto a Cu(111) single crystal, we create a partially oxidized ¹⁸O/Cu(111) surface, which is subsequently exposed to a flux of H₂¹⁶O molecules, resulting in the detection of two RAIRS peaks assigned to ¹⁸OH(ads) and ¹⁶ OH(ads). With continued H₂¹⁶O exposure, the ¹⁸OH(ads) RAIRS signal decreases rapidly while the ¹⁶OH(ads) signal continues to increase, indicating a disproportionation reaction of the adsorbed hydroxyl species, resulting in net desorption of H₂¹⁸O(g) and replacement of ¹⁸O(ads) by ¹⁶O(ads).

