Precision spectroscopy of transitions from the metastable 2 3S_1 state of 4He to high np Rydberg states

G. Clausen¹, J. Agner¹, H. Schmutz¹, S. Scheidegger¹, F. Merkt¹*

¹Laboratory of Physical Chemistry, ETH Zurich

The metastable He $((1s)^1(2s)^1)$ atom in its singlet $(^1S_0)$ or triplet $(^3S_1)$ states is an ideal system to perform tests of *ab-initio* calculations of two-electron systems that include quantum-electrodynamics and nuclear finite-size effects. The recent determination of the ionization energy of the metastable 2 1S_0 state of 4 He [1] confirmed a discrepancy between the latest theoretical values of the Lamb shifts in low-lying electronic states of triplet helium [2] and the measured 3 3 D \leftarrow 2 3 S₁ [3] and 3 3 D \leftarrow 2 3 P [4] transition frequencies. This discrepancy could not be resolved in the latest calculations [5,6].

Currently, we focus on the development of a new experimental method for the determination of the ionization energy of the 2 3S_1 state of 4He via the measurement of transitions from the 2 3S_1 state to np Rydberg states. Extrapolation of the np series yields the ionization energy with sub-MHz accuracy.

In this poster, we present the progress in the development of our experimental setup, which involves (i) the preparation of a cold, supersonic expansion of helium atoms in the 2^3S state, (ii) the development and characterization of a laser system for driving the transitions to the np Rydberg states and (iii) the implementation of a new sub-Doppler, background-free detection method. We present this new spectroscopic method, with which we cancel the 1 st-order Doppler shift and illustrate its power with a new determination of the ionization energy of 2^3S_1 metastable He.

- [1] Gloria Clausen, Paul Jansen, Simon Scheidegger, Josef A. Agner, Hansjürg Schmutz, and Frédéric Merkt, Phys. Rev. Lett. **127**, 093001 (2021).
- [2] Voijtěch Patkóš, Vladimir A. Yerokhin, and Krzysztof Pachucki, Phys. Rev. A. **103**, 042809 (2021).
- [3] Christophe Dorrer, François Nez, Béatrice de Beauvoir, Lucile Julien, and François Biraben, Phys. Rev. Lett. **78**, 3658 (1997).
- [4] Pei-Ling Luo, Jin-Long Peng, Jinmeng Hu, Yan Feng, Li-Bang Wang, and Jow-Tsong Shy, Phys. Rev. A. **94**, 062507 (2016).
- [5] Vladimir A. Yerokhin, Voijtěch Patkóš, and Krzysztof Pachucki, Eur. Phys. J. D. **76**, 142 (2022).
- [6] Vladimir A. Yerokhin, Voijtěch Patkóš, and Krzysztof Pachucki, Phys. Rev. A. **107**, 012810 (2023).