
Anticancer rhenium di- and tricarbonyl complexes and synthesis of new α -diimine rhenium dicarbonyl complexes

<u>K. Schindler¹</u>, J. Delasoie¹, J. Rossier¹, A. Crochet¹, A. Pavic², F. Zobi¹*

¹Chemistry Department, University of Fribourg, ²University of Belgrade, Serbia

In our effort to discover novel selective and non-toxic agents effective against CRC, we synthesized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μ M). At doses as high as 250 μ M the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.[1]

In another study, we reported a rhenium(II) dicarbonyl complex, which displayed better cytotoxicity against MCF-7 breast cancer cells than cisplatin.[2] We investigated later new synthetic routes to aerobically stable and substitutionally labile α -diimine rhenium(I) dicarbonyl complexes. The molecules were prepared in high yield from the *cis-cis-trans*-[Re(CO)₂(^tBu₂ bpy)Br₂]⁻ anion (where ^tBu₂bpy is 4,4'-di-*tert*-butyl-2,2'-bipyridine), which could be isolated from the one electron reduction of the corresponding 17-electron complex. Ligand substitution of Re(I) complexes proceeded via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the *cis-cis-trans*-complexes, *cis-cis-cis-* (all *cis*) isomers were also formed. [Re(CO)₂(^tBu₂bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium *cis*-[Re(CO)₂]⁺ complexes, offering a convenient entry in the chemistry of the core.[3]

[1] Joachim Delasoie, Aleksandar Pavic, Noémie Voutier, Sandra Vojnovic, Aurélien Crochet, Jasmina Nikodinovic-Runic, Fabio Zobi, *Eur. J. Med. Chem.*, **2020**, 204, 112583.

[2] Jérémie Rossier, Daniel Hauser, Emmanuel Kottelat, Barbara Rothen-Rutishauser, Fabio Zobi, Dalton Trans., **2017**, 7, 2159.

[3] Kevin Schindler, Aurélien Crochet, Fabio Zobi, RSC Adv., **2021**, 13, 7511.