
Ultrafast-sintered self-standing LLZO membranes for high energy density Li-garnet solid-state batteries

<u>H. Zhang</u>^{1,3}, F. Okur^{1,3}, R. Dubey^{1,3}, M. Inniger^{1,3}, R. Wullich^{1,3}, D. T. Karabay^{1,3}, A. Parrilli², A. Neels², K. V. Kravchyk^{1,3}*, M. V. Kovalenko^{1,3}*

¹Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland, ²Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science & Technology, CH-8600 Dübendorf, Switzerland, ³Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

Towards building non-flammable and temperature-tolerant Li-ion batteries with high energy density, $Li_7La_3Zr_2O_{12}$ (LLZO) has recently attracted considerable attention as a compelling solid-state Li-ion electrolyte (SSE) due to its high thermal stability, Li-ion conductivity of up to 1 mS cm⁻¹ (RT), and a wide electrochemical operation window of 0–6 V vs. Li⁺/Li.^[1, 2] Additionally, unlike other Li-ion soft solid conductors such as those based on sulfides, LLZO SSE can be manufactured with a bilayer dense-porous microstructure, which prevents the issues of dynamic volume change of the Li anode and the formation of voids at the Li/SSE interface during cycling and thus eliminates the need for external pressure.^[3, 4] Here we report a facile, ultrafast sintering methodology for the fabrication of LLZO solid-state electrolyte in the form of self-standing bilayer dense-porous LLZO membranes. The thickness of the produced dense and porous layers was *ca*. 8 µm and 55 µm, which hypothetically allows to achieve high gravimetric and volumetric energy densities of Li-garnet batteries of 218 Wh kg⁻¹ and 769 Wh L⁻¹ (in combination with an NMC811/LiFSI-Pyr₁₃FSI cathode). Electrochemical measurements confirmed that produced LLZO membranes possess high critical current density up to 1.7 mA cm⁻² and cycling stability of over 160 cycles at a current density of 0.4 mA cm⁻².

[1] Romain Dubey, Jordi Sastre, Claudia Cancellieri, Faruk Okur, Alex Forster, Lea Pompizii, Agnieszka Priebe, Yaroslav E. Romanyuk, Lars P. H. Jeurgens, Maksym V. Kovalenko, Kostiantyn V. Kravchyk, *Adv. Energy Mater*. **2021**, 2102086.

[2] Semih Afyon, Kostiantyn V. Kravchyk, Shutao Wang, Jan van den Broek, Christian Hänsel, Maksym V. Kovalenko, Jennifer L. M. Rupp, *J. Mater. Chem*. A **2019**, 7, 21299.

[3] Kostiantyn V. Kravchyk, Faruk Okur, M. V. Kovalenko, ACS Energy Lett. 2021, 2202.

[4] Kostiantyn V. Kravchyk, Huanyu Zhang, Faruk Okur, Maksym V. Kovalenko, Acc. Mater. Res., **2022**, 3, 4, 411-415.